Tag: MNIST

#009 TF An implementation of a Convolutional Neural Network in tf.keras – MNIST dataset

In this post we will see how we can classify handwritten digits using Convolutional Neural Network implemented in TensorFlow 2.0. Required packages: Numpy Matplotlib Tensorflow Sklearn Seaborn Table of Contents: Load the digit dataset Implementing a Neural Network Visualization and Testing 1. Load the digit dataset Let start with importing all necessary libraries. After imports, we can use imported module to load mnist data. The load_data() function will automatically download and split our data into…
Read more

#008 TF An implementation of a Convolutional Neural Network in tf.keras – MNIST dataset

In this post we will see how we can classify handwritten digits using convolutional neural network implemented in Keras. Required packages: Numpy Matplotlib Keras Tensorflow Sklearn Seaborn __future__ Keras-vis Table of Contents: Load the digit dataset Implementing a Neural Network Visualization Test our model Save a model as picture Activation Maps Saliency maps Activations Now we can plot some predictions, to see how our model works. Images for testing can be downloaded from the internet…
Read more

#008 TF 2.0 An implementation of a Shallow Neural Network in tf.keras – digits dataset

In this post we will see how we can classify handwritten digits using shallow neural network implemented with tf.keras. Table of Contents: Load the digit dataset Implementing a Neural Network Visualization and Testing 1. Load the digits dataset First, let us import all necessary libraries. After imports, we can use imported module to load digits data. The load_digits() function will just download data and we need to split it into train and test sets. We can also…
Read more