Category: Machine Learning

#FA 003 Face Detection in Videos using OpenCV

In real case scenarios, there is often a need for detection and recognition of faces not just in images, but in videos. For example, this is a necessary prerequisite for security cameras, filters on social networks, identification at work and many other cases where cameras are used. The pictures are static, but videos can be seen as a series of pictures, or frames. All video clips are constructed of a constant number of frames in…
Read more

#008 TF An implementation of a Convolutional Neural Network in tf.keras – MNIST dataset

In this post we will see how we can classify handwritten digits using convolutional neural network implemented in Keras. Required packages: Numpy Matplotlib Keras Tensorflow Sklearn Seaborn __future__ Keras-vis Table of Contents: Load the digit dataset Implementing a Neural Network Visualization Test our model Save a model as picture Activation Maps Saliency maps Activations Now we can plot some predictions, to see how our model works. Images for testing can be downloaded from the internet…
Read more

#008 TF 2.0 An implementation of a Shallow Neural Network in tf.keras – digits dataset

In this post we will see how we can classify handwritten digits using shallow neural network implemented with tf.keras. Table of Contents: Load the digit dataset Implementing a Neural Network Visualization and Testing 1. Load the digits dataset First, let us import all necessary libraries. After imports, we can use imported module to load digits data. The load_digits() function will just download data and we need to split it into train and test sets. We can also…
Read more

#004 TF 2.0 TensorFlow Wrappers

Highlights: In this post we are going to talk more about TensorFlow Wrappers. We are going to compare things before and after TensorFlow 2.0. This post will be the introductory one to the series of posts where we are going to build a wide variety of neural networks. To use TensorFlow in our projects, we need to learn how to program using the TensorFlow API. TensorFlow has multiple APIs that can be used to interact with…
Read more

#003 TF 2.0 Eager Execution- A Pythonic way of using TensorFlow

TensorFlow uses Eager execution, which is a more convenient way to execute the code, and also more “Pythonic”. It is a default choice in the latest version TensorFlow 2.0. In TensorFlow 1.x, we first need to write a Python program that constructs a graph for our computation, the program then invokes Session.run(), which hands the graph off for execution to the C++ runtime. This type of programming is called declarative programming (specification of the computation…
Read more